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Abstract 

This study evaluates computational intelligence 
methods for classifying 3D vectorcardiographic (3D-
VCG) data into normal (NORM), myocardial infarction 
(MI), and ST-T change (STTC) categories. Unlike 
conventional ECG, 3D-VCG captures spatial cardiac 
depolarization, offering enhanced diagnostic insights. 
Using the PTB-XL Database, 12-lead ECGs were 
transformed into XYZ leads via the Kors matrix. A 
balanced dataset of 7,146 patients (2,382 per class) was 
used to train and test three models: a multi-layer 
perceptron (MLP), a convolutional neural network (CNN), 
and a long short-term memory (LSTM). Each model 
processed 350 samples per lead. MLP achieved the highest 
test accuracy (99.80%), followed by LSTM (89.00%) and 
CNN (83.26%). A 10-fold cross-validation on LSTM 
yielded an average accuracy of 94.0 ± 1.8%, though it did 
not surpass MLP. These results show the potential of 3D-
VCG and machine learning for automated MI and STTC 
detection. 

 
1. Introduction 

The electrocardiogram (ECG) is a non-invasive tool for 
assessing the overall patient's heart condition and is the 
first-line test for diagnosing cardiac disease (CVD) [1]. 
The 3D vectorcardiogram (VCG) signal adds value to ECG 
analysis by providing additional information and enabling 
the calculation of parameters that cannot be derived from 
separate ECG leads [2]. The VCG represents the sum of all 
instantaneous electrical vectors generated by myocardial 
cells in the heart and provides a multidirectional view of 
cardiac electrical activity in space and time [3].  

 
This tool enables the development of various markers, 

such as the assessment of ventricular repolarization 
heterogeneity, which results from intercellular differences 
in depolarization times and action potential morphology 
[4]. Furthermore, a recent study showed that QT dispersion 
is mainly determined by T-loop morphology, as reflected 
in T-loop amplitude and width. In contrast, an older study 
reported a widened QRS-T angle in patients with left 
ventricular failure [5]. The QRS-T angle reflects the 
deviations between ventricular depolarizations. Spatial and 

frontal QRS-T angles are two different ways to measure 
the QRS-T angle [5]. 

 
However, these previously developed VCG 

morphology descriptors are insufficient to fully 
characterize the complex three-dimensional morphology 
of the VCG loop [5]. Analysis of the QRS loops in VCG 
morphology can help define the abnormal 
electrophysiological substrate in patients with life-
threatening ventricular arrhythmias [5]. The morphology 
of the VCG loop can be characterized by the direction and 
amplitude of the initial instantaneous [5] and maximum 
peak and average spatial vectors of the loop [5]. In 
addition, deep learning-based artificial intelligence (AI) 
algorithms have recently achieved cutting-edge 
performance in multiple domains [6]. An advantage of 
deep learning is the automatic learning of features and 
relationships from specific data, without domain 
knowledge [6].  

 
This study investigated deep learning-based AI 

algorithms to detect myocardial infarction (MI) and 
ischemic ST-T changes (STTC) using 3D VCG loop 
morphology and compared their performance with that of 
conventional methods reported in the literature. The 
approach consists of an MLP with three layers of nodes 
and backpropagation for training, a classical supervised 
learning method [7]. The convolutional neural network 
(CNN) was another model studied. CNN is a nonlinear 
statistical model that attempts to identify optimal linear 
combinations of the input variables and then model the 
result as a nonlinear function of these covariates [7]. This 
deep learning framework can distinguish data that is not 
linearly separable. Another model was the long short-term 
memory (LSTM) [7-8], which has been used for ECG 
signal classification [7-8] and has emerged as a relevant 
approach in recent deep-learning studies.   

 
The objective of this study is to compare the 

performance of MLP, CNN, and LSTM classifiers for 
separating the NORM, MI, and STTC groups using XYZ 
ECG coordinates as input features. Thus, the study 
investigates the ability of XYZ ECG coordinates to 
discriminate between normal patients and those with 
ischemic disease or myocardial infarction using deep 
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learning models.  
 

2. Materials and Methods 

2.1. Dataset 

The PTB-XL dataset is publicly available in the 
Physionet repository [9-10]. The research procedures were 
conducted in accordance with the Helsinki Declaration 
[11]. The dataset comprises 21,837 clinical 12-lead 10-
second ECG records from 18,885 patients, 52% male and 
48% female. The data were organized hierarchically into 
five coarse superclasses (NORM: normal ECG, CD: 
conduction disturbance, MI: myocardial infarction, HYP: 
hypertrophy, and STTC: ST-T changes) [11]. Only the 
classes NORM, MI, and STTC were investigated, with 
2,382 patients randomly selected per group (7,146 subjects 
total). The PTB-XL has a rich set of ECG annotations and 
additional metadata, making the dataset an ideal resource 
for training and evaluating machine learning algorithms 
[11]. Training and testing subsamples were balanced, with 
no significant differences in clinical or ECG 
characteristics. 

 
2.2. Pre-Processing 

Twelve-lead ECG signals were low-pass filtered with a 
2nd-order Butterworth filter at 35 Hz. R-wave detection 
was performed on digitized ECG signals using the Pan & 
Tompkins algorithm [12]. A software implemented in 
Python 3.12 [13] was developed to perform ECG and 3D 
vectorcardiographic analysis. 

 
2.3. Data Analysis 

The Kors matrix was used to transform 12-lead ECG 
into XYZ ECG coordinates for all ECG signals [14]. After 
that, each XYZ ECG coordinate was averaged, considering 
the R-wave as a reference. The XYZ coordinates (X, Y, Z, 
superclass) were used for analysis. The data were 
organized in a matrix (2,501,100 x 4), with each segment 
of 350 samples being from a different patient. For each 
group, 2,382 ECG signals were randomly selected. After, 
the dataset was split into two non-overlapping sets: training 
(70%; n = 5,002) and testing (30%; n = 2,144). 

For the MLP, the data were organized in a matrix (7,146 
x 1,050) with (X, Y, Z, superclass) side by side. The ECG 
data were also organized in a matrix (7,146 x 350 x 3) to 
match the expected [samples, timesteps, features] structure 
required by the LSTM and CNN algorithms for 3D 
classification. The MLP, LSTM, and CNN models were 
created using the Keras framework on top of TensorFlow 
2.1. 

All three of these models begin with an embedding 
layer. The LSTM network consisted of two bidirectional 

LSTM layers followed by two fully connected layers [15]. 
The CNN network consisted of a convolutional layer, an 
average pooling layer, a convolutional layer, a global 
average pooling layer, and two fully connected layers [15]. 
The number of layers and epochs were empirically found 
on a single training set with the original distribution of 
NORM, MI, and STTC groups. The models were trained 
multiple times at each step using the aforementioned 
temporary training sets with varying sizes and prevalences. 
A test run empirically determined the number of epochs, 
yielding 20 for the MLP/LSTM/CNN models.  

 
2.4. Performance Evaluation 

Each model's performance was evaluated by assessing 
sensitivity and specificity. The predictive accuracies of the 
models were compared using the area under the receiver 
operating characteristic (ROC) curve (AUC). Since 
screening aims to detect all prevalent CVD cases, 
maximizing test sensitivity was prioritized. The CVD 
detection performance was confirmed in the independent 
dataset by measuring AUC and assessing the sensitivity 
and specificity of the selected threshold at the earlier step.  

The sliding window approach and LSTM models were 
implemented using high-level libraries, including Keras, 
NumPy, Pandas, and Scikit-learn [13], and executed in 
Google Colab notebooks — a cloud-based platform built 
on Jupyter notebooks. This environment is integrated with 
Google Drive, providing free access to computational 
resources and easing model development and execution. 

The age and VCG parameters were compared using a 
one-way ANOVA with a 95% confidence interval. 

 
3. Results 

The results from the comparison of VCG parameters in 
the three study groups are summarized in Table 1. There 
was no significant difference in age between the groups. 
However, significant differences were obtained for VCG 
parameters. An example of 3D VCG for NORM, MI, and 
STTC signals is presented in Figure 1. The spatial QRS-T 
angle, SVG, and EL-SVG presented larger values in 
patients with MI and STTC than in the NORM class 
(p < 0.0001). 

A comparison of the prediction models' performance is 
shown in Table 2. The MLP model achieved the highest 
predictive accuracy across both the training and test 
samples. The CNN model showed a moderate predictive 
AUC, which was significantly lower than that of the MLP 
model with VCG input. The LSTM showed high predictive 
AUC only in the training set, which was considerably 
worse than that of the MLP model with VCG input. 

One more test was performed on the LSTM model, 
using the K-fold approach with 10 folds. This approach 
improved performance, achieving an average accuracy of 
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94.0 ± 1.8%. The other models show intermediate 
accuracy values for a similar fit. 

 
 
A) 

 
B) 

 
C) 

 
Figure 1. Average vectorcardiograms (VCGs) for patients 
with myocardial infarction (MI), ST-T change, and normal 
conditions, presented from different perspectives (A, B, 
and C).  

 
Table 1. The average (standard deviation) for age, QRS-T 
angle, the magnitude of the spatial ventricular gradient 
(SVG), and the elevation angle of the SVG (EL-SVG) 

 NORM MI STTC p-value 

Age 51.9 
(17.2) 

64.0 
(12.7) 

64.8 
(14.4) 0.2341 

QRS-T angle 55.9 
(45.5) 

86.4 
(46.1) 

89.1 
(49.1) * <0.0001 

SVG 1226.6 
(390.7) 

1017.3 
(351.2) 

1083.1 
(340.8) * <0.0001 

EL-SVG 66.6 
(14.1) 

72.2 
(11.6) 

65.1 
(13.8) * <0.0001 

 
 

Table 2. Comparison of classifier performance indices 

 MLP CNN LSTM 

 Train Test Train Test Train Test 

AUC 0.99 0.99 0.96 0.83 0.99 0.89 

Accuracy 0.99 0.97 0.89 0.69 0.97 0.77 

Precision 0.99 0.96 0.89 0.69 0.97 0.77 

Recall 0.99 0.99 0.89 0.68 0.97 0.77 

 
4. Discussion 

The purpose of the study was to compare the 
performance of the MLP, CNN, and LSTM classifiers in 
separating the NORM, MI, and STTC groups, using the 
XYZ ECG coordinates as input features. To the best of our 
knowledge, this study is the first to assess VCG 
morphology using a deep learning algorithm, thereby 
preventing any comparison with literature. 

The classical MLP model produced the best results 
using three layers. An excellent performance was obtained 
with the 3D ECG samples without any segmentation on the 
ECG or fiducial point measurements. The results 
overcome earlier classification results for this type of ECG 
patterns [6-8][16].  

However, CNN and LSTM models underperformed 
MLP, with comparable results. This cannot be used to 
claim that MPL is the best tool, since any classification 
model has a set of configuration parameters that could be 
further explored [16]. For example, rearranging the VCG 
data using a k-fold approach improved LSTM performance 
to values comparable to those of other methods in the 
literature [7][16]. 

In converting the 12-lead ECG to the VCG, much 
redundant information is removed. However, extracting 
XYZ coordinates mathematically may omit key features. 
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Even so, it enables us to achieve significant results in 
classifying heart diseases, such as MI and STTC [16]. 

The performance of VCG models was slightly worse in 
the test sample than in the training sample. Further studies 
are needed to compare the performance of machine 
learning models using the raw VCG signal as input versus 
the derived ECG metrics [16]. 

 
5. Conclusion 

This study provides a practical framework for the 
automated detection of MI and STTC on short segments of 
XYZ ECG using machine learning models. Specifically, it 
can classify NORM, MI, and STTC with more than 94% 
accuracy and hence can be employed in clinical settings 
using the MLP and LSTM models. In future studies, the 
performance of the proposed model will be evaluated on 
different MI and STTC datasets. This may constitute an 
interesting line of future research, where the same 
approach should be extended to real-time data. 
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