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Abstract

This study evaluates computational intelligence
methods for classifying 3D vectorcardiographic (3D-
VCG) data into normal (NORM), myocardial infarction
(MI), and ST-T change (STTC) -categories. Unlike
conventional ECG, 3D-VCG captures spatial cardiac
depolarization, offering enhanced diagnostic insights.
Using the PTB-XL Database, 12-lead ECGs were
transformed into XYZ leads via the Kors matrix. A
balanced dataset of 7,146 patients (2,382 per class) was
used to train and test three models: a multi-layer
perceptron (MLP), a convolutional neural network (CNN),
and a long short-term memory (LSTM). Each model
processed 350 samples per lead. MLP achieved the highest
test accuracy (99.80%), followed by LSTM (89.00%) and
CNN (83.26%). A 10-fold cross-validation on LSTM
yielded an average accuracy of 94.0 £ 1.8%, though it did
not surpass MLP. These results show the potential of 3D-
VCG and machine learning for automated MI and STTC
detection.

1. Introduction

The electrocardiogram (ECQG) is a non-invasive tool for
assessing the overall patient's heart condition and is the
first-line test for diagnosing cardiac disease (CVD) [1].
The 3D vectorcardiogram (VCG) signal adds value to ECG
analysis by providing additional information and enabling
the calculation of parameters that cannot be derived from
separate ECG leads [2]. The VCG represents the sum of all
instantaneous electrical vectors generated by myocardial
cells in the heart and provides a multidirectional view of
cardiac electrical activity in space and time [3].

This tool enables the development of various markers,
such as the assessment of ventricular repolarization
heterogeneity, which results from intercellular differences
in depolarization times and action potential morphology
[4]. Furthermore, a recent study showed that QT dispersion
is mainly determined by T-loop morphology, as reflected
in T-loop amplitude and width. In contrast, an older study
reported a widened QRS-T angle in patients with left
ventricular failure [5]. The QRS-T angle reflects the
deviations between ventricular depolarizations. Spatial and
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frontal QRS-T angles are two different ways to measure
the QRS-T angle [5].

However, these previously developed VCG
morphology descriptors are insufficient to fully
characterize the complex three-dimensional morphology
of the VCG loop [5]. Analysis of the QRS loops in VCG
morphology can  help define the abnormal
electrophysiological substrate in patients with life-
threatening ventricular arrhythmias [5]. The morphology
of the VCG loop can be characterized by the direction and
amplitude of the initial instantaneous [5] and maximum
peak and average spatial vectors of the loop [5]. In
addition, deep learning-based artificial intelligence (Al)
algorithms have recently achieved cutting-edge
performance in multiple domains [6]. An advantage of
deep learning is the automatic learning of features and
relationships from specific data, without domain
knowledge [6].

This study investigated deep learning-based Al
algorithms to detect myocardial infarction (MI) and
ischemic ST-T changes (STTC) using 3D VCG loop
morphology and compared their performance with that of
conventional methods reported in the literature. The
approach consists of an MLP with three layers of nodes
and backpropagation for training, a classical supervised
learning method [7]. The convolutional neural network
(CNN) was another model studied. CNN is a nonlinear
statistical model that attempts to identify optimal linear
combinations of the input variables and then model the
result as a nonlinear function of these covariates [7]. This
deep learning framework can distinguish data that is not
linearly separable. Another model was the long short-term
memory (LSTM) [7-8], which has been used for ECG
signal classification [7-8] and has emerged as a relevant
approach in recent deep-learning studies.

The objective of this study is to compare the
performance of MLP, CNN, and LSTM classifiers for
separating the NORM, MI, and STTC groups using XYZ
ECG coordinates as input features. Thus, the study
investigates the ability of XYZ ECG coordinates to
discriminate between normal patients and those with
ischemic disease or myocardial infarction using deep
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learning models.

2. Materials and Methods

2.1. Dataset

The PTB-XL dataset is publicly available in the
Physionet repository [9-10]. The research procedures were
conducted in accordance with the Helsinki Declaration
[11]. The dataset comprises 21,837 clinical 12-lead 10-
second ECG records from 18,885 patients, 52% male and
48% female. The data were organized hierarchically into
five coarse superclasses (NORM: normal ECG, CD:
conduction disturbance, MI: myocardial infarction, HYP:
hypertrophy, and STTC: ST-T changes) [11]. Only the
classes NORM, MI, and STTC were investigated, with
2,382 patients randomly selected per group (7,146 subjects
total). The PTB-XL has a rich set of ECG annotations and
additional metadata, making the dataset an ideal resource
for training and evaluating machine learning algorithms
[11]. Training and testing subsamples were balanced, with
no significant differences in clinical or ECG
characteristics.

2.2.  Pre-Processing

Twelve-lead ECG signals were low-pass filtered with a
2nd-order Butterworth filter at 35 Hz. R-wave detection
was performed on digitized ECG signals using the Pan &
Tompkins algorithm [12]. A software implemented in
Python 3.12 [13] was developed to perform ECG and 3D
vectorcardiographic analysis.

2.3. Data Analysis

The Kors matrix was used to transform 12-lead ECG
into XYZ ECG coordinates for all ECG signals [14]. After
that, each XYZ ECG coordinate was averaged, considering
the R-wave as a reference. The XYZ coordinates (X, Y, Z,
superclass) were used for analysis. The data were
organized in a matrix (2,501,100 x 4), with each segment
of 350 samples being from a different patient. For each
group, 2,382 ECG signals were randomly selected. After,
the dataset was split into two non-overlapping sets: training
(70%; n =5,002) and testing (30%; n = 2,144).

For the MLP, the data were organized in a matrix (7,146
x 1,050) with (X, Y, Z, superclass) side by side. The ECG
data were also organized in a matrix (7,146 x 350 x 3) to
match the expected [samples, timesteps, features] structure
required by the LSTM and CNN algorithms for 3D
classification. The MLP, LSTM, and CNN models were
created using the Keras framework on top of TensorFlow
2.1.

All three of these models begin with an embedding
layer. The LSTM network consisted of two bidirectional

LSTM layers followed by two fully connected layers [15].
The CNN network consisted of a convolutional layer, an
average pooling layer, a convolutional layer, a global
average pooling layer, and two fully connected layers [15].
The number of layers and epochs were empirically found
on a single training set with the original distribution of
NORM, MI, and STTC groups. The models were trained
multiple times at each step using the aforementioned
temporary training sets with varying sizes and prevalences.
A test run empirically determined the number of epochs,
yielding 20 for the MLP/LSTM/CNN models.

2.4. Performance Evaluation

Each model's performance was evaluated by assessing
sensitivity and specificity. The predictive accuracies of the
models were compared using the area under the receiver
operating characteristic (ROC) curve (AUC). Since
screening aims to detect all prevalent CVD cases,
maximizing test sensitivity was prioritized. The CVD
detection performance was confirmed in the independent
dataset by measuring AUC and assessing the sensitivity
and specificity of the selected threshold at the earlier step.

The sliding window approach and LSTM models were
implemented using high-level libraries, including Keras,
NumPy, Pandas, and Scikit-learn [13], and executed in
Google Colab notebooks — a cloud-based platform built
on Jupyter notebooks. This environment is integrated with
Google Drive, providing free access to computational
resources and easing model development and execution.

The age and VCG parameters were compared using a
one-way ANOVA with a 95% confidence interval.

3. Results

The results from the comparison of VCG parameters in
the three study groups are summarized in Table 1. There
was no significant difference in age between the groups.
However, significant differences were obtained for VCG
parameters. An example of 3D VCG for NORM, MI, and
STTC signals is presented in Figure 1. The spatial QRS-T
angle, SVG, and EL-SVG presented larger values in
patients with MI and STTC than in the NORM class
(p <0.0001).

A comparison of the prediction models' performance is
shown in Table 2. The MLP model achieved the highest
predictive accuracy across both the training and test
samples. The CNN model showed a moderate predictive
AUC, which was significantly lower than that of the MLP
model with VCG input. The LSTM showed high predictive
AUC only in the training set, which was considerably
worse than that of the MLP model with VCG input.

One more test was performed on the LSTM model,
using the K-fold approach with 10 folds. This approach
improved performance, achieving an average accuracy of
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94.0+1.8%. The other models show intermediate
accuracy values for a similar fit.
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Figure 1. Average vectorcardiograms (VCGs) for patients
with myocardial infarction (MI), ST-T change, and normal
conditions, presented from different perspectives (A, B,
and C).

Table 1. The average (standard deviation) for age, QRS-T
angle, the magnitude of the spatial ventricular gradient
(SVG), and the elevation angle of the SVG (EL-SVGQG)

NORM MI STTC p-value

51.9 64.0 64.8
Age (17.2) (12.7) (14.4) 0.2341

55.9 86.4 89.1

QRS-T angle (45.5) (46.1) (49.1) * <0.0001

1226.6 1017.3 1083.1

SVG (390.7)  (3512)  (340.8)* 00001
66.6 722 65.1

EL-SVG (14.1) (11.6) (138  ~0.0001

Table 2. Comparison of classifier performance indices

MLP CNN LSTM

Train Test Train Test Train Test

AUC 099 099 09 0.83 099 0.89
Accuracy 0.99 097 0.89 0.69 0.97 0.77
Precision 0.99 096 0.89 0.69 097 0.77

Recall 099 099 0.89 0.68 097 0.77

4. Discussion

The purpose of the study was to compare the
performance of the MLP, CNN, and LSTM classifiers in
separating the NORM, MI, and STTC groups, using the
XYZ ECG coordinates as input features. To the best of our
knowledge, this study is the first to assess VCG
morphology using a deep learning algorithm, thereby
preventing any comparison with literature.

The classical MLP model produced the best results
using three layers. An excellent performance was obtained
with the 3D ECG samples without any segmentation on the
ECG or fiducial point measurements. The results
overcome earlier classification results for this type of ECG
patterns [6-8][16].

However, CNN and LSTM models underperformed
MLP, with comparable results. This cannot be used to
claim that MPL is the best tool, since any classification
model has a set of configuration parameters that could be
further explored [16]. For example, rearranging the VCG
data using a k-fold approach improved LSTM performance
to values comparable to those of other methods in the
literature [7][16].

In converting the 12-lead ECG to the VCG, much
redundant information is removed. However, extracting
XYZ coordinates mathematically may omit key features.
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Even so, it enables us to achieve significant results in
classifying heart diseases, such as MI and STTC [16].

The performance of VCG models was slightly worse in
the test sample than in the training sample. Further studies
are needed to compare the performance of machine
learning models using the raw VCG signal as input versus
the derived ECG metrics [16].

5. Conclusion

This study provides a practical framework for the
automated detection of MI and STTC on short segments of
XYZ ECG using machine learning models. Specifically, it
can classify NORM, MI, and STTC with more than 94%
accuracy and hence can be employed in clinical settings
using the MLP and LSTM models. In future studies, the
performance of the proposed model will be evaluated on
different MI and STTC datasets. This may constitute an
interesting line of future research, where the same
approach should be extended to real-time data.
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